NT	
Name:	
Instructor:	

Math 10560, Practice Exam 1. February 14, 2012

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLEASE MA	RK YOUR ANS	SWERS WIT	$H \underbrace{AN X, \text{ not } \epsilon}$	circle!
1. (a)	(b)	(c)	(d)	\times
2. (a)	×	(c)	(d)	(e)
3. (a)	(b)	(c)	(d)	×
4. (a)	(b)	X	(d)	(e)
5. (a)	(b)	(c)	\Re	(e)
6. (a)	(b)	×	(d)	(e)
7. (a)	(b)	X	(d)	(e)
8. (a)	(b)	(c)		(e)

Please do NOT	write in this box.
Multiple Choice	
9.	
10.	
11.	
12.	
Total	

Instructor:

Multiple Choice

1.(7 pts.) Simplify the following expression for x.

$$x = \log_3 81 + \log_3 \frac{1}{9} \ .$$

(a)
$$x = 9$$

(b)
$$x = 6$$

$$(c) \quad x = \ln 9 - \ln 3$$

(d)
$$x = \ln 3$$

$$(e) \quad x = 2$$

$$x = \log_3 \frac{81}{9} = \log_3 9 = \log_3 (3^2) = 2$$

2.(7 pts.) The function $f(x) = x^3 + 3x + e^{2x}$ is one-to-one. Compute $(f^{-1})'(1)$.

(a) 0 (b)
$$\frac{1}{5}$$
 (c) $\frac{1}{4}$ (d) $\frac{1}{6+e}$ (e) $\frac{1}{6+2e}$

(c)
$$\frac{1}{4}$$

(d)
$$\frac{1}{6+\epsilon}$$

(e)
$$\frac{1}{6+}$$

$$(f'')'(1) = \frac{1}{f'(f'(1))} = \frac{1}{5}$$

$$f^{-1}(1) = 0$$

$$f'(1) = 0$$
 $f'(x) = 3x^2 + 3 + 2e^{2x}$

$$f'(0) = 3+2=5$$

Name:	
Instructor:	

3.(7 pts.) Differentiate the function

$$f(x) = \frac{(x^2 - 1)^4}{\sqrt{x^2 + 1}}.$$

(a)
$$f'(x) = \frac{x(x^2 - 1)^4}{\sqrt{x^2 + 1}} \left(\frac{8}{x^2 - 1} + \frac{1}{x^2 + 1} \right)$$
 $f(x) = \frac{(x^2 - 1)^4}{\sqrt{x^2 + 1}} \left(\frac{4}{x^2 - 1} - \frac{1}{x^2 + 1} \right)$

(c)
$$f'(x) = \frac{(x^2 - 1)^4}{\sqrt{x^2 + 1}} \left(\frac{4}{x^2 - 1} + \frac{1}{x^2 + 1} \right)$$

(d)
$$f'(x) = \frac{(x^2 - 1)^4}{\sqrt{x^2 + 1}} \left(\frac{8}{x^2 - 1} - \frac{1}{x^2 + 1} \right)$$
(e) $f'(x) = \frac{x(x^2 - 1)^4}{\sqrt{x^2 + 1}} \left(\frac{8}{x^2 - 1} - \frac{1}{x^2 + 1} \right)$

$$\ln f(x) = \ln \frac{(x^2-1)^4}{\sqrt{x^2+1}} = \ln (x^2-1)^4 - \ln (x^2+1)^{1/2}$$

$$= 4 \ln (x^2-1)^4 - \frac{1}{2} \ln (x^2+1)$$

4.(7 pts.) Compute the integral

$$\int_{2e}^{2e^{2}} \frac{1}{x(\ln \frac{x}{2})^{2}} dx.$$
(a) 2 (b) $\frac{3}{2}$ (c) $\frac{1}{2}$ (d) 1 (e) 0
$$u = \ln \frac{x}{2} \Rightarrow du = \frac{2}{x} \cdot \frac{1}{2} dx = \frac{1}{x} dx$$

$$\Rightarrow = \int_{1}^{2} \frac{1}{u^{2}} du = \frac{1}{u} \Big|_{1}^{2} = \frac{1}{2} + 1 = \frac{1}{2}$$

Name:	
Instructor:	

 $\mathbf{5.}(7 \text{ pts.})$ Which of the following expressions gives the partial fraction decomposition of the function

$$f(x) = \frac{x^2 - 2x + 6}{x^3(x - 3)(x^2 + 4)}$$
?

(a)
$$\frac{A}{x^3} + \frac{B}{x-3} + \frac{C}{x^2+4}$$

(b) $\frac{A}{x^3} + \frac{B}{x-3} + \frac{Cx+D}{x^2+4}$
(c) $\frac{A}{x^3} + \frac{B}{x^2} + \frac{C}{x} + \frac{D}{x-3} + \frac{E}{x^2+4}$
(d) $\frac{A}{x^3} + \frac{B}{x^2} + \frac{C}{x} + \frac{D}{x-3} + \frac{Ex+F}{x^2+4}$

6.(7 pts.) Find f'(x) if

(a)
$$2(\ln x)x^{\ln x}$$

(b)
$$x^{\ln x} \ln x$$

(c)
$$2(\ln x)x^{(\ln x)-1}$$

(d)
$$x^{\ln x}(\ln x + 1)$$

(e)
$$x^{(\ln x)-1} \ln x$$

$$f(x) = x^{\ln x}$$

$$= e^{(\ln x)(\ln x)}$$

$$= e^{(\ln x)^{2}}$$

$$= e^{(\ln x)^{2}}$$

$$= (2 \ln x) \cdot \frac{1}{x}$$

$$= x^{\ln x} \cdot 2 \ln x \cdot x^{-1}$$

$$= x^{\ln x} \cdot 2 \ln x \cdot x^{-1}$$

$$= x^{\ln x} \cdot 2 \ln x \cdot x^{-1}$$

Name:	
Instructor:	

7.(7 pts.) Calculate the following integral.

8.(7 pts.) Evaluate the integral

$$\int_{0}^{\pi/2} \sin^{3}(x) \cos^{5}(x) dx.$$
(a) 0 (b) $\frac{\pi}{2}$ (c) $-\frac{1}{24}$ (d) $\frac{1}{24}$ (e) $\frac{1}{4}$

$$= \int_{0}^{\pi/2} \sin^{3}(x) \cos^{4}(x) \cos(x) dx$$

$$= \int_{0}^{\pi/2} \sin^{3}(x) (1-\sin^{2}(x))^{2} \cos(x) dx \qquad U = \sin x dx$$

$$= \int_{0}^{\pi/2} \sin^{3}(x) (1-u^{2})^{2} du = \int_{0}^{\pi/2} (u^{3} - 2u^{5} + u^{7}) du$$

$$= \frac{1}{4}u^{4} - \frac{1}{3}u^{6} + \frac{1}{8}u^{8}|_{0}^{1} = \frac{1}{4} - \frac{1}{3} + \frac{1}{8} = \frac{6-8+3}{24}$$

Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

9.(11 pts.) Compute the limit

$$\frac{H}{2}\lim_{x\to 2}\frac{1}{x}=1$$

$$= \sqrt{L = e^{\frac{1}{2}}}$$

LIATE

Name:	
Instructor:	

10.(11 pts.) Evaluate the integral

$$\int \underline{x^2} \cos(2x) dx.$$

$$= \frac{1}{2}x^2 \sin 2x - \int x \sin 2x \, dx$$

$$=\frac{1}{2}x^{2}\sin 2x-\left(-\frac{1}{2}x\cos 2x+\int \frac{1}{2}\cos 2xdx\right)$$

$$= \frac{1}{2}x^2\sin 2x + \frac{1}{2}x\cos 2x - \frac{1}{4}\sin 2x + C$$

Name:	
Instructor:	

11.(11 pts.) Evaluate:

$$\frac{1}{3}x^{3}\sqrt{9-x^{2}}=\frac{1}{3}x^{2}\sqrt{9-x^{2}}\cdot x$$

$$\int \frac{1}{3} x^3 \sqrt{9 - x^2} \ dx.$$

$$u=9-x^{2} \in x^{2}=9-u$$
 $du=-2xdx$

$$= \int_{3}^{1} (9-u) \sqrt{u} \left(-\frac{1}{2} du\right) = -\frac{1}{6} \int_{3}^{1} (9\sqrt{u} - u^{3/2}) du$$

$$= -\frac{1}{6} \left(6u^{3/2} - \frac{2}{5}u^{5/2} \right) + C$$

$$= \left| -\left(9 - x^2 \right)^{3/2} + \frac{1}{15} \left(9 - x^2 \right)^{5/2} + \right|$$

Name:	
Instructor:	

12.(11 pts.) Let C(t) be the concentration of a drug in the bloodstream. As the body eliminates the drug, C(t) decreases at a rate that is proportional to the amount of the drug that is present at the time. Thus C'(t) = kC(t), where k is a constant. The initial concentration of the drug is 4 mg/ml. After 5 hours, the concentration is 3 mg/ml.

(a) Give a formula for the concentration of the drug at time t.

$$C(t) = Me^{kt}. \quad C(0) = Me^{0} = M = 4$$

$$C(5) = 4e^{5k} = 3 \Rightarrow e^{5k} = \frac{3}{4} \Rightarrow k = \frac{1}{5} \ln \frac{3}{4}$$
Okay to leave
$$C(4) = 4e^{\left(\frac{1}{5} \ln \frac{3}{4}\right)t} = 4e^{\frac{1}{5} \ln \frac{3}{4}} = 4e^{\ln\left(\frac{3}{4}\right)t/5}$$

(b) How much drug will there be in 10 hours?

$$C(10) = 4e^{2\ln \frac{3}{4}} = 4 \cdot e^{\ln \frac{9}{16}} = 4\left(\frac{9}{16}\right) = \frac{9}{4}$$

$$\left(-\text{or-} C(10) = 4\left(\frac{3}{4}\right)^2 = 4 \cdot \left(\frac{9}{16}\right) = \frac{9}{4}$$

(c) How long will it take for the concentration to drop to 0.5 mg/ml?

$$0.5 = \frac{1}{2} = C(t) = 4e^{(\frac{1}{5}\ln\frac{3}{4})t} \Rightarrow \frac{1}{8} = e^{(\frac{1}{5}\ln\frac{3}{4})t}$$

$$\Rightarrow \ln \frac{1}{8} = -\ln 8 = \frac{1}{5}\ln\frac{3}{4}t$$

$$\Rightarrow 1 + \frac{-5\ln 8}{\ln(\frac{3}{4})} \Rightarrow \frac{1}{9} = e^{(\frac{1}{5}\ln\frac{3}{4})t}$$

Name: _______Instructor: ______

The following is the list of useful trigonometric formulas:

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

$$\sin 2x = 2\sin x \cos x$$

$$\sin x \cos y = \frac{1}{2}(\sin(x - y) + \sin(x + y))$$

$$\sin x \sin y = \frac{1}{2}(\cos(x - y) - \cos(x + y))$$

$$\cos x \cos y = \frac{1}{2}(\cos(x - y) + \cos(x + y))$$

The hyperbolic sine and cosine functions are defined to be:

$$\cosh x = \frac{e^x + e^{-x}}{2}$$
$$\sinh x = \frac{e^x - e^{-x}}{2}$$

Name:		
Instructor:	ANSWERS	

Math 10560, Practice Exam 1. February 14, 2012

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLEA	ASE MARK	YOUR AN	SWERS WITH	H AN X, not a	a circle!
1.	(a)	(b)	(c)	(d)	(●)
2.	(a)	(•)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(●)
4.	(a)	(b)	(•)	(d)	(e)
5.	(a)	(b)	(c)	(ullet)	(e)
6.	(a)	(b)	(•)	(d)	(e)
7.	(a)	(b)	(ullet)	(d)	(e)
8.	(a)	(b)	(c)	(ullet)	(e)

Please do NOT	write in this box.
Multiple Choice	
9.	
10.	
11.	
12.	
Total	

Name:	
Instructor:	
Math 10560, Exam 1	
February 17, 2015	

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 4 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

Please do NOT	write in this box.
Multiple Choice	
2.	
3.	
Total	

Name: Instructor: ____

Multiple Choice

1.(6 pts) Which of the following expressions gives the partial fraction decomposition of the function

$$f(x) = \frac{x^2 - 2x + 6}{x^3(x - 3)(x^2 + 4)}$$
?

(b)
$$\frac{A}{x^3} + \frac{B}{x-3} + \frac{C}{x^2+4}$$

(c)
$$\frac{A}{x^3} + \frac{B}{x^2} + \frac{C}{x} + \frac{D}{x-3} + \underbrace{\frac{E}{x+2} + \frac{F}{x}}_{2}$$

(d)
$$\frac{A}{x^3} + \frac{B}{x-3} + \frac{Cx+D}{x^2+4}$$

(e)
$$\frac{A}{x^3} + \frac{B}{x^2} + \frac{C}{x} + \frac{D}{x-3} + \frac{E}{x^2+4}$$

Name:	
Instructor:	

Partial Credit

You must show your work on the partial credit problems to receive credit!

2.(11 pts.) Find the integral

$$\int \frac{3x+1}{x^3+x^2} dx.$$

$$\frac{3x+1}{x^3+x^2} = \frac{3x+1}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}$$

=>
$$3x+1=Ax(x+1)+B(x+1)+Cx^2=(A+C)x^2+(A+B)x+B$$

$$A + C = 0 \Rightarrow C = -2$$

$$A + B = 3 \Rightarrow A = 2$$

$$B = 1$$

$$\int \frac{3x+1}{x^3+x^2} dx = \int \left(\frac{2}{x} + \frac{1}{x^2} - \frac{2}{x+1}\right) dx$$

$$= 2|n|x| - \frac{1}{x} - 2|n|x+1| + C = \left|\ln\left(\frac{x}{x+1}\right)^2 - \frac{1}{x} + C\right|$$

Name: ______Instructor:

3.(11 pts.) Calculate the integral

$$\int \frac{dx}{x + \sqrt[3]{x}} \qquad u = \sqrt[3]{x} \iff u^3 = x$$

$$3u^2 du = dx$$

$$\int \frac{dx}{x+3x} = \int \frac{3u^2}{u^3+u} du = \int \frac{3u}{u^2+1} du \qquad v=u^2+1$$

$$= \frac{3}{2} \int \frac{1}{v} dv = \frac{3}{2} \ln|v| + C$$

$$= \frac{3}{2} \ln |u^2 + 1| + C = \left[\frac{3}{2} \ln |x^2|^3 + 1 \right] + C$$

Name:		
Instructor:	ANSWERS	
Exam 1		

Math 10560, Exam 1 February 17, 2015

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 4 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

Please do NOT	write in this box.
Multiple Choice	
2.	
3.	
Total	